Extensions 1→N→G→Q→1 with N=C22×C4 and Q=A4

Direct product G=N×Q with N=C22×C4 and Q=A4
dρLabelID
A4×C22×C448A4xC2^2xC4192,1496

Semidirect products G=N:Q with N=C22×C4 and Q=A4
extensionφ:Q→Aut NdρLabelID
(C22×C4)⋊1A4 = C24⋊C12φ: A4/C1A4 ⊆ Aut C22×C4126+(C2^2xC4):1A4192,191
(C22×C4)⋊2A4 = 2+ 1+4.C6φ: A4/C1A4 ⊆ Aut C22×C4164(C2^2xC4):2A4192,202
(C22×C4)⋊3A4 = 2+ 1+4.3C6φ: A4/C1A4 ⊆ Aut C22×C4164(C2^2xC4):3A4192,1509
(C22×C4)⋊4A4 = C4×C22⋊A4φ: A4/C22C3 ⊆ Aut C22×C424(C2^2xC4):4A4192,1505

Non-split extensions G=N.Q with N=C22×C4 and Q=A4
extensionφ:Q→Aut NdρLabelID
(C22×C4).1A4 = C42⋊C12φ: A4/C1A4 ⊆ Aut C22×C4246(C2^2xC4).1A4192,192
(C22×C4).2A4 = C422C12φ: A4/C1A4 ⊆ Aut C22×C4246-(C2^2xC4).2A4192,193
(C22×C4).3A4 = C232D4⋊C3φ: A4/C1A4 ⊆ Aut C22×C4126+(C2^2xC4).3A4192,194
(C22×C4).4A4 = (C22×C4).A4φ: A4/C1A4 ⊆ Aut C22×C4246-(C2^2xC4).4A4192,196
(C22×C4).5A4 = C23.19(C2×A4)φ: A4/C1A4 ⊆ Aut C22×C4246(C2^2xC4).5A4192,199
(C22×C4).6A4 = C23.SL2(𝔽3)φ: A4/C1A4 ⊆ Aut C22×C4164(C2^2xC4).6A4192,4
(C22×C4).7A4 = C4×C42⋊C3φ: A4/C22C3 ⊆ Aut C22×C4123(C2^2xC4).7A4192,188
(C22×C4).8A4 = C424C4⋊C3φ: A4/C22C3 ⊆ Aut C22×C4246(C2^2xC4).8A4192,190
(C22×C4).9A4 = C4○D4⋊A4φ: A4/C22C3 ⊆ Aut C22×C4246(C2^2xC4).9A4192,1507
(C22×C4).10A4 = C2×C4×SL2(𝔽3)central extension (φ=1)64(C2^2xC4).10A4192,996
(C22×C4).11A4 = C22×C4.A4central extension (φ=1)64(C2^2xC4).11A4192,1500

׿
×
𝔽